ugipro_lib_cpp

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub CURRY-AND-RICE/ugipro_lib_cpp

:heavy_check_mark: tests/graph/bfs.test.cpp

Depends on

Code

#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=ALDS1_11_C"

#include <bits/stdc++.h>
#include "ugilib/base/constants.hpp"
#include "ugilib/base/definitions.hpp"
#include "ugilib/graph/bfs.hpp"

using namespace std;

// debug settings
// #define DEBUG
#ifdef DEBUG
// debug input
string _INPUT = R"(
5
1 2 3 4 5
)";
auto _cin = stringstream(_INPUT.substr(1)); // remove '\n' at _INPUT[0]
#else
// standard input
auto& _cin = cin;
#endif

// speed up
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")

// reader
struct rd {
    static ll i() {ll i; _cin >> i; return i;}  // long long
    static ld d() {ld d; _cin >> d; return d;}  // long double
    static string s() {string s; _cin >> s; return s;}  // string
    static char c() {char c; _cin >> c; return c;}  // char
    static vector<ll> vi(int n) {vector<ll> v(n); rep(i, n) _cin >> v[i]; return v;}  // vector<long long>
    static vector<pair<ll, ll>> g(int n) {vector<pair<ll, ll>> v(n); rep(i, n) _cin >> v[i].first >> v[i].second; return v;}  // vector<pair<long long, long long>>
    // tuple
    template<typename... Args> static tuple<Args...> t() {
        tuple<Args...> values;
        apply([](auto&... args) { ((_cin >> args), ...); }, values);
        return values;
    }
};

// debug print utility
namespace deb {
    #include <cxxabi.h>
    // demangle type name
    string demangle(const char* name) {
        int status = -4;
        unique_ptr<char, void(*)(void*)> res{
            abi::__cxa_demangle(name, NULL, NULL, &status),
            free
        };
        return (status == 0) ? string(res.get()) : name ;
    }
    // meta functions for type traits
    template<typename T>
    constexpr bool isArithmeticContainer() { return is_arithmetic<typename T::value_type>::value; }
    // for SFINAE
    template<typename T, typename = void> struct has_key_and_mapped_type : false_type {};
    template<typename T> struct has_key_and_mapped_type<T, void_t<typename T::key_type, typename T::mapped_type>> : true_type {};
    // for map or unordered_map
    template<typename T>
    constexpr bool isMapLike() { return has_key_and_mapped_type<T>::value; }

    // for values
    template<typename T, typename enable_if<is_arithmetic<T>::value, nullptr_t>::type = nullptr>
    void p(const T& x) { cout << x << " "; }
    // for pairs
    template <typename T, typename S>
    void p(const pair<T, S>& _p){ p(_p.first); p(_p.second); cout << endl; }
    // for containers
    template<typename T,  typename enable_if<!is_arithmetic<T>::value, nullptr_t>::type = nullptr>
    void p(const T& container) {
        // map and unordered_map
        if constexpr (isMapLike<T>()) {
            cout << demangle(typeid(T).name()) << ":" << endl;
            for (const auto& kv : container) {
                cout << "[" << kv.first << "] => ";
                p(kv.second);
                if constexpr (is_arithmetic_v<typename T::mapped_type>) cout << endl;
            }
        // vector or set or others
        } else {
            if constexpr (!isArithmeticContainer<T>()) cout << demangle(typeid(T).name()) << ":" << endl;
            for (auto it = begin(container); it != end(container); ++it) {
                p(*it);
            }
            if constexpr (isArithmeticContainer<T>()) cout << endl;
        }
    }
};  // namespace deb

int main() {
    auto& cin = _cin;
    // speed up io
    cin.tie(nullptr);
    ios::sync_with_stdio(false);

    // code
    ll n = rd::i();
    vector<vector<pair<int, int>>> graph(n);
    rep(i, n) {
        auto [u, k] = rd::t<int, int>();
        rep(j, k) {
            auto v = rd::i();
            graph[u - 1].emplace_back(v - 1, 1);
        }
    }

    auto costs = ugilib::bfs01(n, 0, graph);
    rep(i, n) {
        cout << i + 1 << " " << (costs[i] == ugilib::constants::INF<int> ? -1 : costs[i]) << endl;
    }

    return 0;
}
#line 1 "tests/graph/bfs.test.cpp"
#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=ALDS1_11_C"

#include <bits/stdc++.h>
#line 2 "ugilib/base/definitions.hpp"

using ll = long long;
using ull = unsigned long long;
using ld = long double;
#define rep(i, n) for(size_t i = 0; i < n; i++)  // rep macro
#define all(v) begin(v), end(v)  // all iterator
#line 3 "ugilib/base/constants.hpp"

namespace ugilib::constants {
    template<typename T>
    inline constexpr T INF = std::numeric_limits<T>::max() / 2;
} // namespace ugilib::constants

const ll INF = ugilib::constants::INF<ll>;
#line 4 "ugilib/graph/bfs.hpp"

using namespace std;

namespace ugilib {
    /**
     * @brief 0or1幅優先探索. 01BFS
     * @param n グラフの頂点数
     * @param start 始点
     * @param graph グラフ. vector<pair<int, weight_type>> で隣接頂点とコストを表す. コストは0 or 1
     * @param weight_inf 無限大の値. パスが存在しない場合のコスト
     * @return 始点から各頂点までの最短距離
     * @note O(E+V)
     * @todo 01BFS問題でのテストを書く
    */
    template <typename weight_type>
    vector<weight_type> bfs01(int n, int start, const vector<vector<pair<int, weight_type>>> &graph, weight_type weight_inf = ugilib::constants::INF<weight_type>) {
        vector<weight_type> costs(n, weight_inf);
        costs[start] = 0;

        deque<int> next_nodes;
        next_nodes.push_back(start);

        while (!next_nodes.empty()) {
            auto node = next_nodes.front(); next_nodes.pop_front();
            auto cost = costs[node];

            for (const auto [next_node, next_cost] : graph[node]) {
                auto new_cost = cost + next_cost;
                if (new_cost < costs[next_node]) {
                    costs[next_node] = new_cost;
                    // 0or1幅優先探索の場合, コストが0の場合は前から入れ, 1の場合は後ろに入れる
                    if (next_cost == 0) next_nodes.push_front(next_node);
                    else next_nodes.push_back(next_node);
                }
            }
        }

        return costs;
    }
}  // namespace ugilib
#line 7 "tests/graph/bfs.test.cpp"

using namespace std;

// debug settings
// #define DEBUG
#ifdef DEBUG
// debug input
string _INPUT = R"(
5
1 2 3 4 5
)";
auto _cin = stringstream(_INPUT.substr(1)); // remove '\n' at _INPUT[0]
#else
// standard input
auto& _cin = cin;
#endif

// speed up
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")

// reader
struct rd {
    static ll i() {ll i; _cin >> i; return i;}  // long long
    static ld d() {ld d; _cin >> d; return d;}  // long double
    static string s() {string s; _cin >> s; return s;}  // string
    static char c() {char c; _cin >> c; return c;}  // char
    static vector<ll> vi(int n) {vector<ll> v(n); rep(i, n) _cin >> v[i]; return v;}  // vector<long long>
    static vector<pair<ll, ll>> g(int n) {vector<pair<ll, ll>> v(n); rep(i, n) _cin >> v[i].first >> v[i].second; return v;}  // vector<pair<long long, long long>>
    // tuple
    template<typename... Args> static tuple<Args...> t() {
        tuple<Args...> values;
        apply([](auto&... args) { ((_cin >> args), ...); }, values);
        return values;
    }
};

// debug print utility
namespace deb {
    #include <cxxabi.h>
    // demangle type name
    string demangle(const char* name) {
        int status = -4;
        unique_ptr<char, void(*)(void*)> res{
            abi::__cxa_demangle(name, NULL, NULL, &status),
            free
        };
        return (status == 0) ? string(res.get()) : name ;
    }
    // meta functions for type traits
    template<typename T>
    constexpr bool isArithmeticContainer() { return is_arithmetic<typename T::value_type>::value; }
    // for SFINAE
    template<typename T, typename = void> struct has_key_and_mapped_type : false_type {};
    template<typename T> struct has_key_and_mapped_type<T, void_t<typename T::key_type, typename T::mapped_type>> : true_type {};
    // for map or unordered_map
    template<typename T>
    constexpr bool isMapLike() { return has_key_and_mapped_type<T>::value; }

    // for values
    template<typename T, typename enable_if<is_arithmetic<T>::value, nullptr_t>::type = nullptr>
    void p(const T& x) { cout << x << " "; }
    // for pairs
    template <typename T, typename S>
    void p(const pair<T, S>& _p){ p(_p.first); p(_p.second); cout << endl; }
    // for containers
    template<typename T,  typename enable_if<!is_arithmetic<T>::value, nullptr_t>::type = nullptr>
    void p(const T& container) {
        // map and unordered_map
        if constexpr (isMapLike<T>()) {
            cout << demangle(typeid(T).name()) << ":" << endl;
            for (const auto& kv : container) {
                cout << "[" << kv.first << "] => ";
                p(kv.second);
                if constexpr (is_arithmetic_v<typename T::mapped_type>) cout << endl;
            }
        // vector or set or others
        } else {
            if constexpr (!isArithmeticContainer<T>()) cout << demangle(typeid(T).name()) << ":" << endl;
            for (auto it = begin(container); it != end(container); ++it) {
                p(*it);
            }
            if constexpr (isArithmeticContainer<T>()) cout << endl;
        }
    }
};  // namespace deb

int main() {
    auto& cin = _cin;
    // speed up io
    cin.tie(nullptr);
    ios::sync_with_stdio(false);

    // code
    ll n = rd::i();
    vector<vector<pair<int, int>>> graph(n);
    rep(i, n) {
        auto [u, k] = rd::t<int, int>();
        rep(j, k) {
            auto v = rd::i();
            graph[u - 1].emplace_back(v - 1, 1);
        }
    }

    auto costs = ugilib::bfs01(n, 0, graph);
    rep(i, n) {
        cout << i + 1 << " " << (costs[i] == ugilib::constants::INF<int> ? -1 : costs[i]) << endl;
    }

    return 0;
}
Back to top page